您好,欢迎访问深圳市富荣达科技有限公司!
1348888888
深圳市富荣达科技有限公司
您的位置:主页 > 新闻动态 > 行业资讯 >

场效应管工作原理输入电流控制_P沟道场效应管工作原理【详细讲解】

发布时间:2020-02-11 18:37人气:

很多朋友对场效应管工作原理输入电流控制以及P沟道场效应管工作原理的理解还存在有一定的疑惑,今天小编在这这篇文章里就好好跟大家详细介绍下,给出最专业易懂的答案,希望能帮助到大家哈!哪里说的不对的地方还请见谅!


场效应管工作原理输入电流控制_P沟道场效应管工作原理【详细讲解】配图第1张


场效应管工作原理

场效应管工作原理用一句话说,就是“漏极-源极间流经沟道的ID,用以栅极与沟道间的pn结形成的反偏的栅极电压控制ID”。更正确地说,ID流经通路的宽度,即沟道截面积,它是由pn结反偏的变化,产生耗尽层扩展变化控制的缘故。在VGS=0的非饱和区域,表示的过渡层的扩展因为不很大,根据漏极-源极间所加VDS的电场,源极区域的某些电子被漏极拉去,即从漏极向源极有电流ID流动。从门极向漏极扩展的过度层将沟道的一部分构成堵塞型,ID饱和。将这种状态称为夹断。这意味着过渡层将沟道的一部分阻挡,并不是电流被切断。


在过渡层由于没有电子、空穴的自由移动,在理想状态下几乎具有绝缘特性,通常电流也难流动。但是此时漏极-源极间的电场,实际上是两个过渡层接触漏极与门极下部附近,由于漂移电场拉去的高速电子通过过渡层。因漂移电场的强度几乎不变产生ID的饱和现象。其次,VGS向负的方向变化,让VGS=VGS(off),此时过渡层大致成为覆盖全区域的状态。而且VDS的电场大部分加到过渡层上,将电子拉向漂移方向的电场,只有靠近源极的很短部分,这更使电流不能流通。


MOS场效应管电源开关电路

MOS场效应管也被称为金属氧化物半导体场效应管(MetalOxideSemiconductor FieldEffect Transistor, MOSFET)。它一般有耗尽型和增强型两种。增强型MOS场效应管可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P沟道型。对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。场效应管的输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。


在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中(见图7b),从而形成电流,使源极和漏极之间导通。可以想像为两个N型半导体之间为一条沟,栅极电压的建立相当于为它们之间搭了一座桥梁,该桥的大小由栅压的大小决定。


C-MOS场效应管(增强型MOS场效应管)

电路将一个增强型P沟道MOS场效应管和一个增强型N沟道MOS场效应管组合在一起使用。当输入端为低电平时,P沟道MOS场效应管导通,输出端与电源正极接通。当输入端为高电平时,N沟道MOS场效应管导通,输出端与电源地接通。在该电路中,P沟道MOS场效应管和N沟道MOS场效应管总是在相反的状态下工作,其相位输入端和输出端相反。通过这种工作方式我们可以获得较大的电流输出。同时由于漏电流的影响,使得栅压在还没有到0V,通常在栅极电压小于1到2V时,MOS场效应管既被关断。不同场效应管其关断电压略有不同。也正因为如此,使得该电路不会因为两管同时导通而造成电源短路。


场效应管工作原理输入电流控制

这个很简单,只是使用过MOS管的人远不如使用过三极管的人多而已。

MOS管是电压控制器件,也就是需要使用电压控制G脚来实现对管子电流的控制。

一般市面上最常见的是增强型N沟通MOS管,你可以用一个电压来控制G的电压,MOS管导通电压一般在2-4V,不过要完全控制,这个值要上升到10V左右。给你推荐一种方法。


基本方法:用一个控制电压(比较器同相输入端)和一个参考电压(比较器反相输入端),同时进入电压比较器(比较器电源接正12V和地,比如LM358当比较器),比较器的输出经过5.1K电阻上拉后接G脚,如果控制电压比参考电压高,则控制MOS管导通输出电流。


参考电压可以来自于采样电阻,也就是在NMOS的S极接一个大功率小电阻后接地,这个电阻做电流采样,当电流流过电阻后会形成电压,把它放大处理后做参考。


刚开始的时候,电流很小,所以控制电压比参考电压高很多,这时候G脚基本上都加了12V,可以使管子迅速导通,在很短时间后,当电流增大逐步达到某个值时,参考电压迅速上升,与控制电压接近并超过时,比较器就输出低电平(接近0V)使管子截止,电流减小。然后电流减少后,参考电压又下去,管子又导通,电流又增大。然后周而复始。


如果你用D/A输出代替控制电压,则可以获得对MOS管的精确控制,我们以前实现过输出范围10-2000mA,步进1mA,输出电流精度正负1mA的水平。


P沟道场效应管工作原理

金属氧化物半导体场效应(MOS)晶体管可分为N沟道与P沟道两大类, P沟道硅MOS场效应晶体管在N型硅衬底上有两个P+区,分别叫做源极和漏极,两极之间不通导,柵极上加有足够的正电压(源极接地)时,柵极下的N型硅表面呈现P型反型层,成为衔接源极和漏极的沟道。改动栅压可以改动沟道中的电子密度,从而改动沟道的电阻。这种MOS场效应晶体管称为P沟道增强型场效应晶体管。假设N型硅衬底表面不加栅压就已存在P型反型层沟道,加上恰当的偏压,可使沟道的电阻增大或减小。这样的MOS场效应晶体管称为P沟道耗尽型场效应晶体管。统称为PMOS晶体管。


P沟道MOS晶体管的空穴迁移率低,因而在MOS晶体管的几何尺寸和工作电压绝对值相等的情况下,PMOS晶体管的跨导小于N沟道MOS晶体管。此外,P沟道MOS晶体管阈值电压的绝对值普通偏高,恳求有较高的工作电压。它的供电电源的电压大小和极性,与双极型晶体管——晶体管逻辑电路不兼容。PMOS因逻辑摆幅大,充电放电过程长,加之器件跨导小,所以工作速度更低,在NMOS电路(见N沟道金属—氧化物—半导体集成电路)呈现之后,多数已为NMOS电路所取代。只是,因PMOS电路工艺简单,价钱低价,有些中范围和小范围数字控制电路仍采用PMOS电路技术。PMOS的特性,Vgs小于一定的值就会导通,适宜用于源极接VCC时的情况(高端驱动)。但是,固然PMOS可以很便当地用作高端驱动,但由于导通电阻大,价钱贵,交流种类少等缘由,在高端驱动中,通常还是运用NMOS。


正常工作时,P沟道增强型MOS管的衬底必需与源极相连,而漏心极的电压Vds应为负值,以保证两个P区与衬底之间的PN结均为反偏,同时为了在衬底顶表面左近构成导电沟道,栅极对源极的电压Vgs也应为负。


1.Vds≠O的情况导电沟道构成以后,DS间加负向电压时,那么在源极与漏极之间将有漏极电流Id流通,而且Id随Vds而增加.Id沿沟道产生的压降使沟道上各点与栅极间的电压不再相等,该电压削弱了栅极中负电荷电场的作用,使沟道从漏极到源极逐渐变窄.当Vds增大到使Vgd=Vgs(TH),沟道在漏极左近呈现预夹断。


2.导电沟道的构成(Vds=0)当Vds=0时,在栅源之间加负电压Vgs,由于绝缘层的存在,故没有电流,但是金属栅极被补充电而聚集负电荷,N型半导体中的多子电子被负电荷排斥向体内运动,表面留下带正电的离子,构成耗尽层,随着G、S间负电压的增加,耗尽层加宽,当Vgs增大到一定值时,衬底中的空穴(少子)被栅极中的负电荷吸收到表面,在耗尽层和绝缘层之间构成一个P型薄层,称反型层,这个反型层就构成漏源之间的导电沟道,这时的Vgs称为开启电压Vgs(th),Vgs到Vgs(th)后再增加,衬底表面感应的空穴越多,反型层加宽,而耗尽层的宽度却不再变化,这样我们可以用Vgs的大小控制导电沟道的宽度。


推荐资讯

在线客服
电话询价
微信询价